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The Measurement of the Real Part of Anomalous Scattering 
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The real part, f '  of the anomalous dispersion correction to atomic structure factors was measured by 
using Pendell6sung fringes for Si 220 and 220 reflections in the wavelength range from Cu Ka 1 to 
Rh KCt~. In order to avoid ambiguity in the Thomson-scattering term due to the nature of the bonding, the 
quantity (f~. - f ' )  was compared with the available theoretical calculations. In this expression, f~. Ag 
and f~g are the corrections for radiation X and Ag KCq, which is used as the standard, respectively. The 
present experimental results fit best the values calculated by Cromer & Liberman [J. Chem. Phys. (1970), 
53, 1891-1898]. 
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1. Introduct ion 

Anomalous-dispersion effects attract X-ray crystal- 
lographers for various reasons. The imaginary p a r t f "  
of the correction to the atomic scattering factorfrelates 
to normal and anomalous (Borrmann) absorption. The 
precise values of the real p a r t f '  of the correction term 
are urgently required for the purpose of accurate 
structure analysis. Furthermore, the complex correction 
f '  + /f" can be used for the phase determination of 
the crystal structure factor if the values o f f '  and f "  
are known with sufficient accuracy. These applications 
of the anomalous dispersion effects, as well as the 
fundamental interests in the X-ray dispersion theory, 
were discussed at the recent conference at Madrid 
(Ramaseshan & Abrahams, 1975). 

Although its importance has been realized for a long 
time, many people feel that there is a lack of accurate 
measurements o f f '  values (Weiss, 1974; Cromer & 
Liberman, 1970). Recently, Cusatis & Hart (1975) 
improved this situation considerably by applying X-ray 
interferometry to this problem. However, it still seems 
necessary to collect more accurate data for various 
materials and in the wavelength region in which most 
crystallographic work is performed. 

In this work, the quantity (fx' -fag) was measured 
for Si in the wavelength range from Cu Ka~ to Rh Ka r 
Here, the suffix X specifies the X-ray wavelength 
employed. The principle of the method is similar to that 
used in the accurate measurement of the ratio of 
structure factors by means of PendellSsung fringes 
(Yamamoto, Homma & Kato, 1968; Tanemura & 
Kato, 1972). 

The experimental results are compared with the 
recent calculations o f f '  (Wagenfeld, 1975; Cromer, 
1965; Cromer & Liberman, 1970; Cromer, 1976). The 
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results fit best the values given by Cromer & Liberman 
(1970). 

2. Principles 

2(a). Resumd of the Pendell6sung method for structure- 
factor determination 

The basic principle of the present work is based on 
the accurate determination of structure factors by 
means of Pendell6sung fringes (Hattori, Kuriyama, 
Katagawa & Kato, 1965; Tanemura & Kato, 1972; 
Kato, 1969) and the ratio of structure factors 
(Yamamoto, Homma & Kato, 1968). Here some of 
them are summarized. 

According to the spherical-wave theory (Kato, 1974) 
the intensity field in the reflection plane determined by 
the direct and the Bragg-reflected beams is given here: 

l~,,j = ,41-fllZlJo(flV/-~oXg)f 2 exp[ - / to (X  o + xg)/sin 20 B] 
(1) 

where II and _1_ specify two modes of X-ray polariza- 
tion, parallel and perpendicular to the reflection plane 
respectively. Here, J0 is the Bessel function of zeroth 
order, and 

= 2r~(2/v)(C/sin 208)(FgFg)~/% (2) 

which depends on the mode of polarization through 
the polarization factor C. It is unity for the perpen- 
dicular mode and Icos 28BI for the parallel mode. The 
notation used in (1) and (2) is as follows: ,4: propor- 
tionality factor; (x0,Xg): coordinates of the observation 
point P, in the oblique axes shown in Fig. 1; #0: linear 
absorption coefficient; rc: classical radius of an 
electron; 2: wavelength; v: volume of unit cell; 88; 
Bragg angle; Fs: structure factor. 
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In the following, we are mainly concerned with the 
intensity along the net plane. Then, 

xV~oxg = p sin O n (3a) 

x o + xg = 2p sin On (3b) 

where p is the distance between the entrance point E 
and the observation point P. 

In the main part of the crystal (/~p sin O n > 3), the 
asymptotic expression of J0 can be used with sufficient 
accuracy so that 

I±.,, = (2Afl/ztsin On)(1/p) cos 2 (tip sin On-  zc/4). 
(4) 

In the actual experiment, in which unpolarized X-rays 
are used, the intensity field is given by 

I =  ½[I l + I,,l. (5) 

The section topograph is a projection of the intensity 
field on the exit surface of the crystal in the direction of 
the Bragg-reflected beam. If a wedge-shaped crystal is 
used as the specimen, the topograph has a triangular 
form. We measured the fringe positions along the 

bisector (y) of the top angle of the pattern as shown 
in Fig. 1. If the wedge form is ideal, y and p are related 
as 

Y = Y0 + p t0 (6) 

where Y0 is the coordinate of the top of the triangular 
pattern. In the simplest case, where the exit surface is 
perpendicular to the reflection plane and the recording 
plate is placed perpendicular to the Bragg-reflected 
beam, the geometrical factor can be calculated by 

= [sin 0n/sin (w/2)l 

x [cos wcos(on-.)/cos(on +-)1 `'2 (7) 

where w is the top angle of the pattern and (t is the 
angle between the exit surface and the reflection vector 
g. 

Since the intensity field is the superposition of 11 
and IH in which the fringe spacings are slightly different 
from each other, the fringes are disturbed in the regions 
where the maxima of 11 happen to be close to the 
minima of I,,. Since there the fringes lose contrast, they 
are called fading regions. Otherwise, the fringe spacing 
is regular and given by 

~ 
E 

, / 

I t 

Fig. 1. Geometry of the section topograph. 

A c = rcl(~v/~, cos OB)/ReI(FgFg)ml  (8) 

on the scale ofp. 
In previous work (Hattori, Kuriyama, Katagawa & 

Kato, 1965), the measurable spacing, A, on the y scale 
was converted to A c by using (7) for ~, and 
R e [ ( F g F g )  ~/z] was obtained from (8). Also, the fringes 
in the fading region were discarded. 

2(b) The improvements in obtaining the ratio o f  
Re(FgF_g) 1/z 

Since we need better accuracy, it is desirable to use 
(1) instead of the appoximation (4). Also, use of the 
available fringes in the fading regions, so far as they 
are visible, is desirable. For these reasons, the following 
procedures were used in the present work. First, the p 
scale is normalized by 

x = p /Aq (9) 

Then, the positions {x,} of the maxima and minima of 
/, given by (5), are computed by the condition OI/Ox = 
0, where the expressions (1) for I± and I~ were used. 
The Newton method was used for this purpose. The 
fringe positions, therefore, can be expressed by 

Y, =Y0 + x ,  AccI)" (10) 

By the standard least-squares method, one can deter- 
mine A = A c • from the measurements of {y.} and 
the calculated values of tx.[. Also, the standard 
deviation, a A, of A is calculated for a set of Iv. }. 
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We determined a pair of A, one for the standard 
radiation,* Ag Kal, and one for the radiation X. Thus, 
from (8), we obtained: 

ReI(FgF_g)t/2l x _ AA____Ag tO_____L x (,;I. cos 0n)Ag. (11) 

Re[(FgF_g)t/2lAg A x q0Ag (2 COS On) x 

The expression pertinent to w in (7) can be written as 

V/COS w/sin w/2 = (tan w)-l(2 cos w/Z/v/cos w), 
(12) 

whereas 

[ c ° s ( 0 n - t 0 ]  (13) 
t a n w = t a n W s i n 0  n 1 + cos(0n+tt) 

where W is the wedge angle of the specimen in the 
section of the net plane. Thus, one obtains 

I 1 -- tan 2 w / 2 ~  1/2 

t1~x/fl)kg 1 tan 2 ct tan 2 gg 
= , , 2 .  

tan 2 tt tan 2 x 

(14) 

This is nearly equal to 1. The unknown quantity 14" 
can be eliminated. Moreover, inaccurately known 
quantities ct and w appear only in small correction 
terms. This is significant from the practical viewpoint. 

2(c) The determination of (f~. -- f~g) 

The crystal structure factor of Si 220, including the 
effects of anomalous dispersion, may be given by 

F(220) = F ° + 8(/" + / f " )  (15) 

with the origin at the center of symmetry, where F ° 
is the structure factor due to Thomson scattering and 
(f '  + /f")  are the correction terms to the atomic 
scattering factor due to anomalous dispersion. Here, 
the reasonable assumption has been made that the 
anomalous dispersion is independent of the nature of 
the bonding. On the other hand, F ° is modified by the 
interatomic bonding. For a crystal with a center of 
symmetry, Fg is identical with F_ s (Zachariasen, 1945), 
so that 

R e [ ( F g F _ g )  1/2] = F ° + 8f'. (16) 

Thus, one can obtain 

By equating (11) and (17), finally, one can determine 
the difference (fx' - f~g)  as follows. 

=~---0-°[ AAg t~X ('~'COS 0B)Ag- 1 ] .  (18) 
f / - f ~ g  Ax ~Ag (2 cos On) x 

Here, F ° has been determined with an accuracy better 
than 0.2% (Tanemura & Kato, 1972; Aldred & Hart, 
1973). The other terms on the right can be determined 
in the present experiment. 

3. Experimental 

The wedge-shaped specimens were prepared from a 
dislocation-free single crystal of Si grown along [111] 
by the floating-zone method. The wedge angles are 
adequately designed for various radiations so that the 
fringe spacings are wide enough for accurate measure- 
ment. The wedge angles of the specimens and the 
radiations are listed in Table 1. One of the wedge 
surfaces was perpendicular to the growth direction. 
After polishing with emery powder of 3 ~tm size for 
shaping the specimens, the distorted layer was etched 
off by HF plus HNO 3 acid. 

The (220) and (220) net planes perpendicular to the 
growth direction were used for taking section topo- 
graphs by standard procedures. An effort, however, 
was made to mount the specimen on the Lang camera 
so that the rotation axis lay exactly on the rear surface. 
In this way, the same part of the specimen could be 
employed in a series of topographs with different 
radiations, including the standard radiation Ag Ka r 

For the purpose of the present work, a fine-focused 
X-ray tube whose target was interchangeable was 
convenient. A G e  target was prepared by evaporating 
Ge on the Cu target. 

The fringe positions {y, } and the top angle w of the 
section topograph were measured by using an optical 
projector equipped with x-y  traverse stages and a 
rotation stage. The reading accuracies of the traverse 
and rotation stages were 1 ~tm and 1 min of arc 
respectively. 

The fringe positions were independently measured 
four times for each plate. The fringe distance 
A = A c • and its standard deviation a a were calculated 

Table 1. The wedge angles of  the specimens and the 
radiations used 

Re[(FgF_s) V2lx 8 
-- 1 + (fx t --f~,g) 

Re[ (FgF_g)t/2] Ae " 

with sufficient accuracy. 

(17) 
Specimen Wedge angle, W Radiations* 

1, 2, 3, 4 ~20 ° 
5 ~12 

6, 7 ~6 
8 ~6 

Mo Kcq; Rh Kcq; (Ag Kal) 
Mo Karl Rh Kcq; (Ag Kcq) 
Cu Kay, Kfl; Ge Kfl, Kat; (Ag Kay) 
Cu Ka l, Kfl; (Ag Kal) 

* Hereinafter, we shall denote it simply by Ag. * (Ag Ka0: standard radiation. 
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Table 2. Examples of  the measurement of  the fringe spacing A (mm) 

Values in parentheses indicate the standard deviations, a A. 

Ag Krtt (No. 72) Rh Krtl (No. 67) Mo Ka~ (No. 68) 

I 0.15959 (9) 0.14584 (6) 0.12638 (6) 
II 0.15962 (9) 0.14580 (8) 0.12640 (6) 
III 0.15954 (8) 0.14584 (7) 0-12638 (6) 
IV 0.15962 (9) 0.14582 (6) 0.12651 (5) 

Ge Kfl (No. 255) Ge Ka~ (No. 256) Cu Kfl (No. 209) Cu Krl, (No. 208) 

I 0.2536 (3) 0.2316 (5) 0.2104 (4) 0.1925 (3) 
II 0.2547 (5) 0.2308 (4) 0.2106 (4) 0.1928 (4) 
III 0.2538 (6) 0.2310 (4) 0.2093 (4) 0.1925 (2) 
IV 0.2541 (4) 0.2306 (2) 0.2101 (3) 0.1931 (4) 

by the least-squares procedure mentioned in § 2(b). 
The examples are shown in Table 2. The mean of the 
standard deviation 6 a indicates a measure of the 
error in A due to the measurement of the fringe 
positions. 

tions, (6a) x and (~A)Ag' by consideration of error 
propagation. There is no significant difference between 
the 220 and 220 reflections for all radiations. For this 
reason, all data are averaged with a weight of e2. The 
figures assigned to the weighted mean with a + sign 

4. Results and discussion 

The experimental values of (fx' --fAg) obtained by (18) 
are listed in Table 3. Here, the figures in parentheses 
are the errors, e, estimated from the standard devia- 

f~. - fkg  

123 

0.2 \ ~  

o . ,  

0.0 2x 
CuCuGeGe Mo Rh Ag 

KtllKfl Kt h Kfl Kt h K~I I K~t t 
Fig. 2. Comparison of the experimental results and the theoretical 

calculations. 2r: wavelength of SiKa. 2x: wavelength of 
radiation X. Curve (1) Cromer (1965). Curve (2) Cromer & 
Liberman (1970). Curve (3) Wagenfeld (1975). 

Table 3. The experimental values of(f;, --f~g) 
All figures listed are to be multiplied by 10 -4 for (a) and (b) 

and by 10 -3 for the rest. 

No. 220 220 
(a) Rh K(ti-Ag 

1 110 (55) 85 (57) 
2 169 (51) 161 (69) 
3 73 (52) 73 (55) 
4 135 (53) 144 (47) 
5 135 (127.) 93 (110) 

Weighted mean 118 + 12 (24) 

(b) Mo Kai -Ag  
1 262 (58) 169 (60) 
2 169 (60) 228 (69) 
3 195 (66) 203 (59) 
4 305 (60) 372 (58) 
5 398 (118) 313 (110) 

Weighted mean 248 + 24 (24) 

(c) Ge K/g-Ag 
6 110(22) 137(31) 
7 110 (31) 102 (28) 

Weighted mean 113 + 8 (14) 

(d) Ge Kc~l-Ag 
6 144 (22) 144 (25) 
7 135 (25) 144 (25) 

Weighted mean 146 +_ 5 (12) 

(e) Cu Kfl--Ag 
6 169 (26) 178 (25) 
7 144 (25) 152 (26) 
8 178 (31) 203 (26) 

Weighted mean 170 + 9 (11) 

(/") Cu Kai-Ag 
6 161 (28) 186 (25) 
7 161 (26) 203 (25) 
8 220 (25) 228 (28) 

Weighted mean 194 + 11 (1 l) 
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are the standard deviation, a, estimated on the assump- 
tion that the values obtained from the different 
specimens and net planes are independent. The error, 
e, is due to the measurement of the fringe positions. On 
the other hand, the standard deviation a includes the 
error due to the misalignment of the specimen and 
photographic plate etc. Nevertheless, as shown in the 
table, their magnitudes are comparable. 

The final results of (f.~ - f a g )  are plotted in Fig. 2. 
The error bars indicate the larger of e and a. The results 
are compared with the recent theoretical calculations of 
Cromer (1965), Cromer & Liberman (1970) and 
Wagenfeld'(1975). The numerical values of fx' for 
Ge Kit t and Kfl for curve 2 were specially calculated 
by Cromer (1976). Our results fit best curve 2 of 
Cromer & Liberman (1970). 

In the present work, the values of (fx' -fAg) instead 
offx' were treated for two reasons. Experimentally, it is 
difficult to attain an accuracy in the geometrical factor, 
q~, in (6) and (7), of better than 0.3%. This accuracy 
is not sufficient to obtain any meaningful discussion on 
f ' .  As explained in § 2(b), one can eliminate the error 
by taking the ratio of ((~X/~Ag). Then, only (fx' --fAg) 
can be determined with sufficient accuracy. 

A further, more fundamental reason, is that the real 
part, f ' ,  cannot be separated from the unknown modi- 
fication of F ° due to the bonding of the atoms. Since 
F ° is independent of wavelength, it is reasonable to 
compare the experimental results of (fx' - f Ag)  with 
the dispersion theory. 

The present method is very special and can be 
applied only to Si perfect crystals. Nevertheless, the 
accuracy is higher than that of any other method. It 
is concluded that the calculation of Cromer & 

Liberman (1970) is most reliable, at least for substances 
of low atomic number. 

The authors are grateful to Dr H. Wagenfeld for 
general discussions on anomalous dispersion in the 
early stages of this work and to Professor D. T. 
Cromer, who kindly supplied us with his newly calcu- 
lated values o f f ' .  
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